Distributed second order methods with variable number of working nodes
نویسندگان
چکیده
February 21, 2017 Abstract Recently, an idling mechanism has been introduced in the context of distributed first order methods for minimization of a sum of nodes’ local convex costs over a generic, connected network. With the idling mechanism, each node i, at each iteration k, is active – updates its solution estimate and exchanges messages with its network neighborhood – with probability pk (pk increasing to one as k grows large), and it stays idle with probability 1−pk, while the activations are independent both across nodes and across iterations. The idling mechanism involves an increasing number of nodes in the algorithm (on average) as the iteration counter k grows, thus avoiding unnecessarily expensive exact updates at the initial iterations while performing beneficial close-to-exact updates near the solution. In this paper, we demonstrate that the idling mechanism can be successfully incorporated in distributed second order methods also. Specifically, we apply the idling mechanism to the recently proposed Distributed Quasi Newton method (DQN). We first show theoretically that DQN with idling exhibits very similar theoretical convergence and convergence rates properties as the standard DQN method, thus achieving the same order of convergence rate (R-linear) as the standard DQN, but with significantly cheaper updates. Further, we demonstrate by simulation examples significant communication and computational savings gained through incorporation of the idling mechanism.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملDAMAGE DETECTION IN THIN PLATES USING A GRADIENT-BASED SECOND-ORDER NUMERICAL OPTIMIZATION TECHNIQUE
The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SO...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملAn Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm
Distributed mutual exclusion is a fundamental problem of distributed systems that coordinates the access to critical shared resources. It concerns with how the various distributed processes access to the shared resources in a mutually exclusive manner. This paper presents fully distributed improved token based mutual exclusion algorithm for distributed system. In this algorithm, a process which...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.01307 شماره
صفحات -
تاریخ انتشار 2017